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Abstract
The (3 + 1)-dimensional hyperbolic nonlinear Schrödinger equation (HNLS) is used as a 
model for different physical phenomena such as the propagation of electromagnetic fields, 
the dynamics of optical soliton promulgation, and the evolution of the water wave surface. 
In this paper, new and different exact solutions for the (3 + 1)-dimensional HNLS equation 
is emerged by using two powerful methods named the Riccati equation method and the 
F-expansion principle. The behaviors of resulting solutions are different and expressed by 
dark, bright, singular, and periodic solutions. The physical explanations for the obtained 
solutions are examined by a graphical representation in 3d profile plots.

Keywords Travelling wave solutions · Solitons · Hyperbolic non-linear Schrödinger 
equations · Riccati equation method · F-expansion principle

1 Introduction

Many modern phenomena in physics, biology, chemistry, engineering, plasma, optics, 
and many others may be modeled with nonlinear evolution equations (NLEE’s). A bet-
ter understanding of these phenomena is the focus and interest of many researchers in 
this field, and therefore great interest was in obtaining exact solutions for these models. 
Inspired by the last observation, many analytical and numerical methods have emerged for 
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this, despite this, there is no specific method to obtain exact solutions for all models, as the 
method that is effective in one model is ineffective in another one, these methods including 
inverse scattering transform method (Ali et  al. 2022; Ali et  al. 2023), Darboux transfor-
mation (Monisha et al. 2022), Bäcklund transformation (Dong et al. 2022), the hyperbola 
function method (Bai 2001), the sine–Gordon expansion method (Kundu, et al. 2021), the 
improved Bernoulli sub-equation function method (Islam and Ali Akbar 2020; Islam et al. 
2020), the lumped Galerkin method (Esen 2005), the Jacobi elliptic function method (Tian 
2017), sine–cosine method (Wazwaz 2006), tanh-sech method (Seadawy 2014; Aly 2014), 
extended tanh-coth method (Bekir 2009), Lie group symmetry analysis method (Sadat 
et  al. 2021; Dig Vijay Tanwar 2022), the first integral method (El-Ganaini 2013), modi-
fied extended mapping method (Bai et al. 2011), homogeneous balance method (Aly 2016; 
Zayed and Arnous 2012), the exp-function method (Remarks and on Exp-Function Method 
and Its Applications-A Supplement 2013), modified simple-equation method (Irshad et al. 
2017; Ali et al. 2017), Kudryashov method (Aly 2017a; Kumar et al. 2018; Barman, et al. 
2021), F-expansion method (Zhou et al. 2003; Yıldırım et al. 2020; Yıldırım and Mirzaza-
deh 2020), Riccati equation method (Bekir 2009; Yıldırım et al. 2020; Yıldırım and Mir-
zazadeh 2020; Huang and Zhang 2005; Song et al. 2007; El-Ganaini and Kumar 2020) and 
many others.

The nonlinear Schrödinger equation (NLS) is one of the most important NLEE’s which 
shows its importance in many applications such as optical fibers communications, Heisen-
berg spin chain, plasma, applied and theoretical physics and many others (El-Ganaini 2013; 
Li 2007; Gorza 2008; Efremidis et al. 2009; Saha et al. 2009; Ai-Lin and Ji 2010; Triki and 
Biswas 2011; Guo and Lin 2012; Triki et al. 2012; Ahmed et al. 2014; Zayed 2016; Arshad 
et al. 2017; Aly 2017b; Mohamed 2018; Seadawy et al. 2018; Islam et al. 2022a, 2022b, 
2022c, 2022d, 2022e, 2023; Akbar et al. 2023; Abdullah et al. 2023). The NLS equation 
takes many forms, among them is the hyperbolic nonlinear Schrödinger (HNLS) equation 
which the (2 + 1)-dimensional form is given by

where � = �(x, y, t) denote a complex field, x and y are the spatial coordinates and t is 
the temporal variable. Equation (1) is used in two important applications, the first one is 
the description of the dynamics of optical soliton promulgation in monomode optical fib-
ers, while the second one is the description of the evolution of the elevation of water wave 
surface for slowly modulated wave trains in deep water in hydrodynamics. The exact travel-
ling wave solutions for Eq. (1) have been obtained in different contexts by using different 
powerful methods (Li 2007; Efremidis et al. 2009; Ai-Lin and Ji 2010; Guo and Lin 2012; 
Ahmed et al. 2014; Zayed 2016; Mohamed 2018; Islam et al. 2022a, 2022b, 2022c, 2023).

In the present article, we aim to study the extension of the HNLS equation in three 
dimensions namely (3 + 1)-dimensional hyperbolic non-linear Schrödinger (HNLS) equa-
tion which is given by Abdullah et al. (2023)

where � = �(x, y, z, t) is a complex- valued function, �∗ is the complex conjugate of � , 
i =

√
−1 , while x, y and z are the spatial variables and t stands for the temporal variable. 

In the study, we will use two powerful methods, namely Riccati equation technique and 
F-expansion principle (Yıldırım and Mirzazadeh 2020) to obtain different travelling wave 

(1)i�y +
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(
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(2)i�y +
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(
�xx + �zz − �tt
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+ �2�∗ = 0,
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solutions Eq.  (2). It is worth noting that, the HNLS (2) has appeared in many different 
applications, such that, it is used as a model for different physical phenomena such as the 
propagation of electromagnetic fields, the dynamics of optical soliton promulgation and the 
evolution of the water wave surface. In the literature, the exact travelling wave solutions 
for Eq. (2) have been also obtained, such that, in Abdullah et al. (2023) a set of different 
exact solutions namely, bright, dark, complex, singular and periodic solutions have been 
obtained.

The rest of the present article is organized as follows: in Sect. 2, a quick review of the 
Riccati equation technique and its steps followed by different exact travelling wave solu-
tions to Eq.  (2) will be illustrated. The instructions of the F-expansion principle and the 
usage of it as an application to Eq. (2) are shown in Sect. 3. In Sect. 4, the physical expla-
nation of the obtained solutions is examined with 3d profile plots representation. The con-
clusion of our work is summarized in Sect. 5.

2  Riccati equation technique

In this section, we briefly review the main steps that we take to obtain exact travelling wave 
solutions for any NLEE in general and apply them to HNLS Eq. (2).

2.1  A quick review of Riccati equation technique

Consider a general governing model given as a NLEE in two independent variables x and t 
(which may be extended to more than two independent variables) is written as

where P and � are unknown’s functions that have linear and nonlinear derivatives of higher 
order. The main procedures of the standard Riccati equation technique can be summarized 
as follows.

Step (1): The given nonlinear evolution Eq. (3) is transformed into an equation of a sin-
gle variable by using the following travelling wave transformation

where k is the wavelength and w is the frequency. Through Eq. (4), the NLEE (3) is trans-
formed into a nonlinear ordinary differential equation (NODE)

Step (2): Suppose that the solution structure of Eq. (5) can be written as

where Aj are real constants, N is a positive integer which results via the balancing principle 
with higher order non-linear and linear terms in Eq. (5) and �(�) satisfies the Riccati equa-
tion in the form

(3)P
(
� ,�t,�x,�tt,�xx,…

)
= 0,

(4)�(x, t) = U(�), � = kx + wt.

(5)F
(
U,U�,U��,U���,…

)
= 0,

(6)U(�) =

N∑
j=0

Aj�
j(�),
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where a ≠ 0, b and c will be determined.
Step (3): Inserting Eq. (6) together with Eq. (7) into Eq. (5) and equating the coefficients 

of �j , j = 0, 1,… ,N to zero, one can obtain a system of equations in the series of unknowns 
parameters k,w,Ai, a, b and c which can be solved via MATHEMATICA or MAPLE software.

Step (4): Putting the obtained values of parameters from the procedure (3) into Eq. (5) 
through which the travelling wave solution can also be obtained using Eq. (4).

We note that the Riccati Eq. (7) is a non-linear first order ODE that can be solved via the 
separation of variables. Suppose that

Then depending on � , the solutions of Eq. (7) can be written as follows.
Case (1): 𝛽 > 0,

Case (1–1): ���2a𝜙 + b∕
√
𝛽
��� > 1,

Case (1–2): ���2a𝜙 + b∕
√
𝛽
��� < 1,

Case (2): 𝛽 < 0,

Case (3): � = 0,

Where �0 is the integration arbitrary constant.

2.2  Travelling wave solutions via Riccati equation technique

In this subsection, we obtain different soliton solutions for HNLS Eq. (2) by considering 
the Riccati equation method. First, apply the following travelling wave transformation to 
HNLS Eq. (2)

where

(7)��(�) = a�2(�) + b� + c,

(8)� = b2 − 4ac,

(9)�(�) = −
b

2a
−

√
�

2a
tanh

�√
�

2
� + �0

�
,

(10)�(�) = −
b

2a
−

√
�

2a
coth

�√
�

2
� + �0

�
,

(11)�(�) = −
b

2a
+

√
−�

2a
tan

�√
−�

2
� + �0

�
,

(12)�(�) = −
b
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−

√
−�

2a
cot

�√
−�

2
� + �0

�
.

(13)�(�) = −
b

2a
−

1

a� + �0
,

(14)�(x, y, z, t) = U(�)ei�(x,y,z,t),
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From Eqs. (2) and (14), we obtain the following derivatives

Inserting the obtained results from Eq. (17) into Eq. (2), then Eq. (2) is then converted 
to non-linear ODE which can be written in the following real and imaginary parts.

The real part:

The imaginary part:

Using Eq. (18) and assuming that it’s solution can be written as

where Aj are real constant will be determined and �(�) satisfies the Riccati Eq. (7).
According to the balancing principle and from Eq.  (18) we conclude that N = 1 and 

hence the series in Eq. (20) can be expanded as

From Eq. (21) together with Eq. (7) we obtain the following formulas for U′,U′′ and U3

Inserting the obtained results from Eq. (22) into Eq. (18) and equating the coefficients 
of different exponents of � to zero, we obtain the following system of equations

(15)�(x, y, z, t) = �
(
B1x + B2y + B3z − �t

)
,

(16)�(x, y, z, t) = −k1x − k2y − k3z + wt,

(17)
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k2U + i�B2U

�
)
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1

2
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2
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2
k2
3
U − ik3�B3U

� +
1

2
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3
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)
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1

2
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(
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2
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1

2
w2U − iw��U�
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ei�,

�2�∗ =U3ei�.
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(
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(20)U(�) =
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(21)U = A0 + A1�,
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(
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Using MAPEL software to solve the system in Eq. (23), we obtain the following impor-
tant results for a, b and c

From Eqs. (24–26) and using Eq. (8) we have

Inserting Eqs. (24–27) into Eqs. (9–13) and by using Eqs. (21, 14), the travelling wave 
solutions for HNLS Eq. (2) will be obtained as follows.

Case (1): when 𝛽 > 0 (see Eq. (27)), we obtain the following travelling wave solutions.
Case (1–1): Dark optical soliton solution

Case (1–2): Singular soliton solution

Case (2): when 𝛽 < 0 (see Eq. (27)), we obtain the following singular periodic soliton 
solutions

where � is defined in Eq. (19).
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3  F‑expansion principle

In this section, similarly, as in the previous sections, we will initially review the steps 
followed in.

F-expansion method to obtain exact soliton solutions of NLEE’s and follow them to 
obtain exact soliton solutions of HNLS Eq. (2).

3.1  A quick review of F‑expansion principle

Consider a general NLEE in two independent variables x and t  (which may be extended 
to more than two independent variables) is written as

where P and � are unknowns’ functions that have linear and nonlinear derivatives of higher 
order. The main procedures of the standard F-expansion principle can be summarized as 
follows.

Step 1: The given nonlinear evolution Eq. (32) is transformed into an equation of a 
single variable by using the following travelling wave transformation

where k is the wavelength and w is the frequency. Through Eq.  (33), the NLEE (32) is 
transformed to a nonlinear ordinary differential equation (NODE)

Step 2: Suppose that the solution structure of Eq. (34) can be written as

where sj are real constants, N is positive integer which result via the balancing principle 
with higher order non-linear and linear terms in Eq. (34) and �(�) satisfies the following 
first order ODE

where T ≠ 0,Q and R will be determined.
Step 3: Inserting Eq. (35) together with Eq. (36) into Eq. (34) and equating the coef-

ficients of.
Fj , j = 0, 1,… ,N  to zero, one can obtain a system of equations in the unknowns 

parameters k,w, si,P,Q and R which can be solved via MATHEMATICA or MAPLE 
software.

Step 4: Putting the obtained values of parameters from procedure (3) into Eq. (34) 
through which the travelling wave solution can also be obtained using Eq. (33).

We note that, in Table 1, the solutions of Eq. (36) are illustrated in terms of Jaco-
bian elliptic functions, for more details we recommended (Akram et al. 2023).

(32)P
(
� ,�t,�x,�tt,�xx,…

)
= 0

(33)�(x, t) = U(�), � = kx + wt

(34)F
(
U,U�,U��,U���,…

)
= 0,

(35)U(�) =

N∑
j=0

sjF
j(�),

(36)F�(�) =
√
PF4(�) + QF2 + R.
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3.2  Travelling wave solutions via F‑expansion principle

In this subsection, by following the steps mentioned in the F-expansion method in the 
previous section, we begin by applying the travelling wave transformation in Eq. (14) to 
HNLS Eq. (2), then Eq. (2) is converted to a nonlinear ODE which it’s real and imagi-
nary parts are written in Eqs. (18) and (19), respectively. Using Eq. (18) and assuming 
that it’s solution can be written as

where sj are real constant will be determined and F(�) satisfies Eq. (36).
According to the balancing principle, then from Eq. (18) we conclude that N = 1 and 

hence the series in Eq. (37) can be expanded as

From Eq. (38) together with Eq. (36) we obtain the following formulas

Using Eq.  (39) together with Eq.  (18) and equating the different exponent of 
Fj, j = 0, 1, 2, 3 to zero, we obtain the following system of equations

The solution of system (40) using MAPLE software gives.

Inserting the obtained values from Eq. (41) into Eq. (38) and using Table 1, the travel-
ling wave solutions for HNLS in Eq. (2) are obtained as follows.

Case (1): Dark-soliton solution

Case (2): Bright-soliton solution

Case (3): Singular-soliton solutions

(37)U(�) =

N∑
j=0

sjF
j(�),

(38)U = s0 + s1F,

(39)
U�� = 2s1PF

3 + s1QF,

U3 = s3
1
F3 + 3s0s

2

1
F2 + 3s2

0
s1F + s3

0
,

(40)

(
s1Q

)(
�2B2

1
+ �2B2

3
− �2�2

)
+ s1

(
2k2 − k2

1
− k2

3
+ w2

)
+ 6s2

0
s1 = 0,(

2s1P
)(
�2B2

1
+ �2B2

3
− �2�2

)
+ 2s3

1
= 0,

s0
(
2k2 − k2

1
− k2

3
+ w2

)
+ 2s3

0
= 0, 6s0s

2

1
= 0.

(41)s0 = 0, s1 = ±

√
P
(
2k2 − k2

1
− k2

3
+ w2

)
Q

, � = ±

√√√√k2
1
+ k2

3
− w2 − 2k2

Q
(
B2

1
+ B2

3
− �2

) .

(42)

�5 = ±

�
k2
1
+ k2

3
− 2k2 − w2tanh

⎛⎜⎜⎝

����k2
1
+ k2

3
− w2 − 2k2

�2 − B2

1
− B2

3

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠
ei(wt−k1x−k2y−k3z),

(43)

�6 = ±

�
k2
1
+ k2

3
− 2k2 − w2sech

⎛⎜⎜⎝

����k2
1
+ k2

3
− w2 − 2k2

B2

1
+ B2

3
− �2

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠
ei(wt−k1x−k2y−k3z),
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Case (4): Singular-periodic soliton solutions

Case (5): Cluster-singular soliton solution

Case (6): Dark-bright soliton solution

(44)

�7 = ±

�
k2
1
+ k2

3
− 2k2 − w2

2
coth

⎛
⎜⎜⎜⎝

�����
k2
1
+ k2

3
− w2 − 2k2

2

�
�2 − B

2

1
− B2

3

� �
B1x + B2y + B3z − �t

�⎞⎟⎟⎟⎠
ei(wt−k1x−k2y−k3z),

(45)

�8 = ±

�
2k2 − k2

1
− k2

3
+ w2csch

⎛⎜⎜⎝

����k2
1
+ k2

3
− w2 − 2k2

B2

1
+ B2

3
− �2

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠
ei(wt−k1x−k2y−k3z).

(46)

�9 = ±

�
2k2 − k2

1
− k2

3
+ w2

2
tan

⎛⎜⎜⎝

����k2
1
+ k2

3
− w2 − 2k2

2
�
B2

1
+ B2

3
− �2

� �
B1x + B2y + B3z − �t

�⎞⎟⎟⎠
ei(wt−k1x−k2y−k3z),

(47)�10 = ±

√

2k2 − k21 − k23 + w2

2
cot

⎛

⎜

⎜

⎝

√

√

√

√

k21 + k23 − w2 − 2k2
2
(

B2
1 + B2

3 − �2
)

(

B1x + B2y + B3z − �t
)

⎞

⎟

⎟

⎠

ei(wt−k1x−k2y−k3z),

(48)

�11 = ±

�
k2
1
+ k2

3
− 2k2 − w2csc

⎛⎜⎜⎝

����k2
1
+ k2

3
− w2 − 2k2

�2 − B
2

1
− B2

3

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠
ei(wt−k1x−k2y−k3z),

(49)

�12 = ±

�
k2
1
+ k2

3
− 2k2 − w2sec

⎛⎜⎜⎝

����k2
1
+ k2

3
− w2 − 2k2

�2 − B
2

1
− B2

3

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠
ei(wt−k1x−k2y−k3z).

(50)

�13 = ±

√

k21 + k23 − 2k2 − w2

2

⎡

⎢

⎢

⎣

coth
⎛

⎜

⎜

⎝

√

√

√

√

2(k21 + k23 − w2 − 2k2)

�2 − B2
1 − B2

3

(

B1x + B2y + B3z − �t
)

⎞

⎟

⎟

⎠

± csch
⎛

⎜

⎜

⎝

√

√

√

√

2(k21 + k23 − w2 − 2k2)

�2 − B2
1 − B2

3

(

B1x + B2y + B3z − �t
)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

ei(wt−k1x−k2y−k3z).

(51)

�14 = ±

�
k2
1
+ k2

3
− 2k2 − w2

2

⎡⎢⎢⎣
tanh

⎛⎜⎜⎝

����2(k2
1
+ k2

3
− w2 − 2k2)

�2 − B
2

1
− B2

3

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠

± sech

⎛⎜⎜⎝

����2(k2
1
+ k2

3
− w2 − 2k2)

�2 − B
2

1
− B2

3

�
B1x + B2y + B3z − �t

�⎞⎟⎟⎠

⎤⎥⎥⎦
ei(wt−k1x−k2y−k3z).

.
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Case (7): Cluster-singular periodic soliton solutions

(52)

�15 = ±

√

2k2 − k21 − k23 + w2

2

⎡

⎢

⎢

⎣

csc
⎛

⎜

⎜

⎝

√

√

√

√

2(k21 + k23 − w2 − 2k2)
B2
1 + B2

3 − �2
(

B1x + B2y + B3z − �t
)

⎞

⎟

⎟

⎠

± cot
⎛

⎜

⎜

⎝

√

√

√

√

2(k21 + k23 − w2 − 2k2)
B2
1 + B2

3 − �2
(

B1x + B2y + B3z − �t
)

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

ei(wt−k1x−k2y−k3z).

(53)

�16 = ±

√

2k2 − k21 − k23 + w2

2

⎡

⎢

⎢

⎣

sec
⎛

⎜

⎜

⎝

√

√

√

√

2(k21 + k23 − w2 − 2k2)

B2
1 + B2

3 − �2
(

B1x + B2y + B3z − �t
)

⎞

⎟

⎟

⎠

± tan
⎛

⎜

⎜

⎝

√

√

√

√

2(k21 + k23 − w2 − 2k2)
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1 + B2

3 − �2
(

B1x + B2y + B3z − �t
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⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

ei(wt−k1x−k2y−k3z).

Fig. 1  The solution structure for soliton solutions obtained by Riccati equation technique
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Fig. 2  The solution structure for the obtained soliton solutions by F-expansion principle
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where � is defined in Eq. (19).

4  Results, physical examination, and discussion

In this section, we will illustrate graphically some solutions for the obtained general ones 
in the previous section. These solutions are coming from giving the arbitrary parameters 
k1, k2, k3,B1,B2,B3 and w a special value.

Figure 1 shows the solution structure for soliton solutions was obtained by Riccati equa-
tion method. Figure 1a shows the dark-soliton solution �1 with parameters values

B1 = 0.8, B2 = 0.6, B3 = 1, k1 = 0.5, k2 = k3=1, w =1.3, η = 1, ξ0 = 0, y = −2, z = 1.
Figure (1-b) illustrates the singular soliton solution �2 with
B1 = 2, B2 = 1, B3 = 2, k1 = 0.5, k2 = k3 = 1, w = 1, η = 1, ξ0 = 0, y = 1, z = −2.
In Fig. 1c, the singular periodic soliton solution �3 is shown with parameters values
B1 = 1, B2 = 2, B3=2, k1 = 1, k2 = −0.7, k3 = 1, w = 1, η = 1, ξ0 = 0, y = 2, z = −4,
While in Fig.  1d, the singular periodic soliton solution �4 is shown with parameters 

values

Figure 2 presents the graphical representation for different solutions of HNLS equation 
using F-expansion method.

In Fig. 2a, the dark-soliton solution �5 is shown with

While in Fig. 2b, the bright-soliton solution �6 is illustrated with

Figure 2c shows the singular soliton solution �7 with

In Fig. 2d, the singular-soliton solution �8 is shown with

Figure  2e–h shows the periodic singular soliton solutions �9,�10,�11 and�12 , 
respectively. The parameters values are B1 = B2 = B3 = K3 = w = y = z = 1 in such 
figures except for k1 andk2 , such that in Fig.  (2-e), k1 = 0.5, k2 = −1, while in Fig.  2f, 
k1 = 1, k2 = −0.7 but in Fig. 2g and h), k1 = 0.5, k2 = 1.

Figure  2i and j shows the cluster-singular soliton solution �13 and the dark-bright 
soliton solution �14 with parameters values B1 = B2 = B3 = k2 = k3 = w = y = z = 1 
and k1 = 0.5 , while in Fig.  2k and l, the Cluster-singular periodic soliton solutions 
�15 and �16 are shown with B1 = B2 = B3 = k1 = k3 = w = y = z = 1, k2 = −0.7 and 
B1 = 0.2,B2 = B3 = 0.5, k1 = k3 = w = y = z = 1, k2 = −0.5 , respectively.

B1 = B2 = B3 = −1, k1 = 1, k2 = −0.8, k3 = 1.4,w = 1.4, � = −1, �0 = −1, y = −
√
2, z =

√
2,

B1 = B2 = 2,B3 = −2, k1 = 1.1, k2 = 9, k3 = 2.3,w = −4.4, y = 1, z = 1,

B1 = 1.1,B2 = B3 = 1.2, k1 = 0.5, k2 = −1, k3 = w = 1, y = −2, z = 2.

B1 = −2,B2 = 1,B3 = 2, k1 = 0.5, k2 = k3 = w = 1, y = 3, z = −1.5.

B1 = 1,B2 = B3 = 2, k1 = k3 = 1, k2 = −0.7,w = 1, y = 2.2, z = −3.
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5  Conclusion

In the present article, we have investigated the travelling wave solutions of the 
(3 + 1)-dimensional hyperbolic nonlinear Schrödinger equation (HNLS) because of its 
paramount importance in several applications such that it is used as a model for differ-
ent physical phenomena such as the propagation of electromagnetic fields, the dynamics 
of optical soliton promulgation and the evolution of the water wave surface. The study 
was done from the point of view of two powerful methods, namely, Riccati equation 
technique and F-expansion principle. Different and new solutions were obtained for that 
equation and physically examined by graphical representations in 3d plots.
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